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Abstract

This fourth Progress Report covers the activities on the High Power Arc jet project from

February 1991 to February 1992.

In this period a new mass flow controller was brought into the gas supply system, so that the

upper limit for the mass flow rate could be increased up to 500 mg/s with hydrogen.

A maximum specific impulse of 1500 s couM be achieved with HIPARC at an efficiency of

slightly better than 20 %. Different nozzle throat diameters had been tested. The 100 kW input

power limit was reached with the 4 mm nozzle throat diameter at a mass flow rate of

400 mg/s. Tests were carried out with different cathode gaps and with three different

cathodes. In addition measurements of pressure and gas temperature were taken in the feed

line in order to determine the pressure drop in the propellant injectors.

As the next step in the program is the development of a radiation cooled high power arc jet

thruster, the design of this thruster is also presented in this report.
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Introduction

Most of the HIPARC data taken have been published at the 22nd Intemational Electric

Propulsion Conference, October 1991 in Viareggio, Italy. The paper IEPC-91-072 "High

Power Arcjet Thruster Experiments" describes the results obtained until September 1991.

This paper in included as Appendix A in this progress report.

Further experimental results obtained in the time after the conference are presented in the

section "Experimental Results". The design of the radiation cooled high power arcjet

(HIPARC-R) is presented in the last section.

Experimental Results

Measurements of the Feed Line Gas Conditions

In order to get informations about the gas conditions in the feed line and the pressure drop in

the propellant injectors pressure and temperature were measured in the feed line 70 cm

upstream of the injection nozzles. The pressure was measured by a absolute pressure strain

gauge of a full scale range of 10 bar. The gas temperature was measured by a thermocouple.

The results of the feed line pressure measurement can be seen in Figs. 8 and 9. The gas

temperature in the feed line could not be measured correctly with the thruster operating.

Typical pressure/temperature values in the feed line before thruster ignition are 20 ° C (equals

293 K) and 1850 mbar at 100 mg/s mass flow rate, and 21-22 ° C and 3600 mbar at 200 mg/s.

At the 300 mg/s mass flow rate the pressure is at about 5300 mbar. The measured temperature

values of about 11 ° C (equals 284 K) seem to be too low compared to the other temperature

data; disturbances are likely.

Cathode Gap Variation

In addition to the diagrams presented in the paper, some more figures referring to the catho_de

gap variation are given below. Figs. 1 and 2 show the variation of arc voltage with the

cathode gap. Although there are only three cathode gaps per power level it is obvious that the

arc voltage does not vary directly with the electrode gap, but that the increase in voltage gets

smaller with longer electrode gaps. This effect is stronger at higher current and power levels.

Previous results with HIPARC (see Appendix A) and with other thrusters [1 ] show that the

larger arc gaps yield higher arc chamber pressures, indicating higher arc chamber temperature

values (because the particle density is not influenced by the arc gap). Higher plasma

temperatures increase the electric conductivity, so that the voltage drop in the arc gets
smaller.

New test runs with the 4 mm nozzle throat diameter were performed with the variation of the

cathode gap. Until now only electrode gaps of 3 mm and 4 mm have been tested. As can be

seen in Fig. 3 the arc gap has a significant influence on arc chamber pressure, but almost none

on specific impulse at constant specific input power (Fig. 4) and thus no influence on thrust

efficiency.
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Fig. 1: Arc Voltage versus Cathode Gap at constant arc current. Mass flow rate is 100

mg/s (left) and 200 mg/s (right), respectively.

70

0

o
[3

o

o 25 KW

o 20 kW

w 15 kW

1 2 3 4 5 6

Cathode Gap [mm]

105

Z
g
S ;oo
o
>

110-

o

o

II

|
95-

45 KW

o 40 kW

II kW
go J , , _ , av.................. ] , , ,

0 I 2 3 4 5 6

Cathode Gap [mm]

Fig. 2: Arc Voltage versus Cathode Gap at constant input power. Mass flow rate is

100 mg/s (left) and 200 mg/s (right), respectively.
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Fig. 3: Arc chamber pressure at two different arc gaps with the 4 mm nozzle throat

diameter.

ol
t....-a

03

C'I

E

(.9

C_
Uq

1400

1200.

1000

800

600

400

2O0
0

4ram Cathode gap, 300mg/s

o 3ram Cathode gap, 300mg/s

a 4ram Cathode Gap, 200mg/s °

A 3ram Cathode Gap, 200mg/s

=A o

._ :o*
o

o.', o

¢laoA o

/"

_A A

OA _

=l • oOO

.... I .... I ' ' ' ' I ' ' ' ' I .... I .... I ....

50 100 1 50 200 250 300 350

Spec. El. Input Power [MWs/kg]

Fig. 4: Thruster performance at two different arc gaps with the 4 mm nozzle throat

diameter.

Variation of the Ambient Pressure

Because it is of importance to know how such a thruster performs in space the simulation of

space vacuum is necessary. As the ambient pressure possible with our vacuum system does

not space vacuum levels, it is attempted to investigate the influence of the ambient pressure in

order to forecast thruster space performance. The ambient pressure levels were varied by

adding an ALCATEL roots pump to the vacuum system, which lowers the ambient pressure

by increasing the suction capacity, so that the biggest effect can he observed at high mass

flow rates. Fig. 5 shows both ambient pressure levels, with and without the additional pump

in operation, versus the specific input power. The characteristic shows a decreasing ambient

pressure with increasing input power in both cases. This is due to the diffuser effect that

increases with increasing plasma velocity. The rapid growth of the background pressure at the

300 mg/s low pressure level test was due to a failure in the vacuum system that resulted in a

thruster shut-down.
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Fig. 5: Ambient Pressure Levels with and without additional pump.

The results show a better thruster performance at the low ambient pressure level, which is

mainly because of the force resulting from the product of pressure difference and nozzle exit

area. Exact values are given in Table 1 below.

g_c

[MJ/kg]

F
Plow

IN]

ap

[mbar]

ZkF
?

IN]

100 1.452 1.477 0.025 0.034 0.011

150 1.708 1.748 0.040 0.035 0.012

200 1.924 1.955 0.031 0.033 0.011

Tab. 1: Comparison between thrust differences at different ambient tank pressures.

The changes in thrust are within the accuracy (-t-0.04 N, see [3]) of the thrust measurement.

Other test runs have to be made with higher mass flow rates, where higher pressure and thus

thrust differences are expected.
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300 mg/s.

Pressure Distribution in the Thruster/Expansion Ratios

Measurement of the arc chamber pressure is almost impossible with radiation cooled

thrusters. This is why most authors measure the feed line pressure instead. In order to be able

to determine the feed line pressure from the arc chamber pressure test runs were made where

the feed line, the arc chamber, and the ambient tank pressure data was taken. The Figures

below (Figs. 8 and 9) show the pressure distributions in the thruster for the 200 mg/s and for

the 300 mg/s mass flow rate. The results are obtained with four injection nozzles with a
0.6 mm bore hole diameter.
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The pressure distributions yield expansion ratios as listed in the following tables (Tabs. 2 and

3). The injector nozzle expansion ratio lies between 5.6 and 4.0, varying inversely with the

specific input power. As the nozzle end pressure was not measured, the expansion ratio e,ozzle

(which is arc chamber pressure devided by the ambient tank pressure) is an approximation of

the nozzle expansion ratio value. Herein the ambient tank pressure was assumed to be equal

to the nozzle end pressure.



P
spcc

[MJ/kg]

Pfl

[mbar]

Pc

[mbar]

Ptank

[mbar]

_nozzle

[-]

8388100.7 3641. 669. 7.97E-2 5.45

150.2 3610. 728. 7.78E-2 4.96 9357

197.5 3592. 767. 7.63E-2 4.68 10059

255.3 3609. 834. 7.47E-2 4.33 11170

298.0 3633. 877. 7.38E-2 4.14 11886

329.9 3643. 907. 7.31E-2 4.02 12397

Tab. 2: Expansion R_ion _ the 200mg_mass flow r_e.

Ps_c Pfl

[MJ/kg] [mbar]

102.2 5259.

161.6 5293.

204.6 5359.

253.2 5366.

Tab. 3: Expansion

Pc

[mbar]

935.

1036.

1105.

1168.

Pt_ Einjector Enozzle

[mbar] [-] [-]

O. 134 5.62 6979

0.131

0.131

0.125

5.11

4.85

4.59

7936

8461

9320

Ratios at the 300 mg/s mass flow rate.

Radiation Cooled HIPARC Thruster Design

The development of a radiation cooled high power arcjet thruster has begun in December

1991 and led to the design presented here. The overall dimensions have been chosen

according to temperature measurements with the Institute's radiation cooled 10 kW arc jet

thruster and finite element thermal calculations performed with this 10 kW thruster geometry

[1]. In addition a scale-up of the results from radiative heat flux measurements taken by

Sankovic and Curran [2] had been used to check the design.

Fig. 10 shows a cross sectional and a front view of this thruster. The most obvious feature is

the technique the nozzle is fastened to the thruster housing. In order to keep the housing as

small as possible a cramping technique is used to fix the anode onto the housing. The nozzle

is centered by the injector disk.
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Thethrusterdimensionsweredeterminedunderthe following assumptions:

1. A portion of 10 % of the electric input power have to be radiated off the housing.

2. The emission coefficient is e = 0.4.

3. The anode temperature must not exceed 2300 K.

These assumptions yields a nozzle surface area required of 157.6 cm 2, which is a 7.2 cm

nozzle length at a diameter of 7 cm. The anode loss of I0 % of the total input electrical power

was taken from Sankovic and Curran [2], where anode loss rates of between 8 % and 15 %

had been measured with the hydrogen operated radiation cooled device at higher mass flow

rate and input power levels. Besides that we still have the option to increase the emissivity of

the nozzle material by coating the body.

I

c-tl_

335

A

Fig. 10: Cross sectional drawing of HIPARC-R, the radiation cooled High Power A.rcjet.

The thruster called HIPARC-R has a 4 mm nozzle throat diameter and a conical nozzle with

an opening angle of 20 °. The nozzle exit diameter is 60 mm leading to a throat to exit area

ratio is 1/225. The cathode is 10 mm in diameter with a 60 ° cone tip. The anode nozzle body

and the cathode are made of thoriated tungsten. The thruster housing, the nozzle fastening

device and the propellant injector disc are made of TZM. Insulators are fabricated of boron
nitride.
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Power Arcjet Thruster Experiments

T. M. G¢ilz, M. Auweter-Kurtz, H. L. Kurtz, and H. O. Schrade

Institut ffir Raun'tfahrtsyslenle
1;niversit/.ttStuttgart

Abstract

A water cooled laboratory model of a high power thermal arc jet was designed and built at the lnstitut flir

Raumfahrtsystenle (IRS). The thruster was designed.[or the lOO kW power level. It was run with hydrogen as

propellant exclusively. The baseline thruster has a 6 mm throat diameter and a conical nozzle with a 20" half angle.

With Ibis thruster version a maximum specific impulse of about 1500 s was reached at an electric input power of

100 kW and a mass flow rate of 200 mg/s. Maximum input power was 140 kW with a cathode diameter of 14 mm.

lhe no_le throat diameter was varied from 6 mm down to 2.5 ram, the cathode gap was varied between 2 mm

and 6 ram. Data were taken over a mass flow range between 100 and 500 mg/s. The cathode shape was modified in

order to find an optimal shape in terms of discharge behaviour and gas flow conditions. The current distribution in

the nozzle was determined and it was found to be in good correspondence with the heat flux distribution.

Furthermore, thrust and arc chamber pressure were measured.

Introduction

Since the weight of spacc structures such as
satellites and their lifetime have bod_ increased in the

last few years, there is a need for efficient secondary

propulsion devices which provide both long lifetime

and high thrust level. As the lifelimc limiting faclor

using chemical propulsion systems ix the propellant

tankage, systems offering high specific impulse

values are advantageous for use with such space
structures.

Thennal arcjet propulsion systems offer

possibilities to satisfy these demands in terms of low

propellant consumption and moderate efficiency.

Most of the currently existing and l'ommr arcjet
thrusters are operated m the 1-30 kW range, offering

thrust levels between 0.1 and 5 N and specific

impulses from 400 to 1200 s, depending on the

pmpellanl used. Best results could be achieved wilh

hydrogen, the propellant with the lowest molar mass.

Iffficiencies are in the 40 _ region, the best results

were measured by the (_iannini Scientific

('orporation I m 1965 with a regenerativcly cooled

hydrogen arcjet in the 30 kW class. Efficiencies of
55 c7_and more could be reached

In the mid sixties AVCO (7orporation 2 had

already developed and tested a hydrogen arcjet in the

power level beyond lOOkW. A maximum input
power of 216 kW al a specific impulse {>1"2210 s at a

mass flow rate of 327 mg/s had been achieved.

[)ue to the lack of large SF:tCC power syslenls.

there has been no further research tm thenllal arqets

in this class until recently. As a 100 kW power source

ix being developed in the ILS. SP 100 program, new

interest has grown in the development of high power

arciet thrusters. As a first step lowards a radiation

cooled thruster a water cooled thermal arcjet thruster

fitting this power level has been developed at the

Instilut ffir Raumfzdlrlsysteme (IRS, Inslitute for

Space Systems). This laboratory model has been de-

signed and built for the investigation of influences

governing the performance in order to find optimum

geometry for such a high power device.

i ..................

Cons t r ,c _0,-

[ ]egc_er, t

i

_i

Fig. 1: Schematic Drawing of the HIPARC Thruster

Experimental Setup

HIPARC Thruster

HIPARC (High Power ARCjet) is a constrictor-

type arcjet thruster, which consists of a stack of four
individually water cooled segments, building up a

conical nozzle with a 20 _ half angle. All nozzle

segments serve as anode, where the current in each

segment is measured individually. Also the heat

fluxes into the cooling water of each nozzle segment
and of the cathode base are detennined.

The cathode is screwed on a water cooled copper

tube which provides cathode base cooling. It can be

moved axially in order to adjust the cathode gap.



All nozzle segments can be replaced easily, and

thus a change of nozzle shape or throat di_uneter is

easy to realize. In this paper results obtained with tile

four different thruster confiourations given m Tab. I

are presented.

Thruster Baseline Mod I Mod 2 Mod. 3
Version

Throat 6 mm 2 5 nl/n 4 mm 4 mm
Diameter

AE/A t 114:1 661'1 258:1 258:1

1 1 1Constrictor

l/d

Cathode

Type
Mass Flow

. Ranse

No. I

100-

500 mg/s

Tab. 1: Thruster

Types according to Fig. 3)

2

No. II No. II No. III

I O0 - I O0 - 100 -

350 mg/s 400 mg/s 400 mg/s

Configurauons Tested (Cathode

The propelhmt gas ix injected through fi)ur

molybdenum inserts into tile arc chmnber, directed

45 ° axially so that the jet aims into the gap between

cathode tip and arc ch;nnber wall, each of Omm

having a tangentially directed bore hole of 0.6 mm in

diaaneter. The four gas jets reduce a swirl which

stabilizes tile arc by leading the plasma along tile vor-

tex train in the constrictor.

Fig. 2: Baseline Thruster (7onfiguration

Three cathodes have been tested, two of them

having a shaft diameter of 14 mm (Cathode No. 1 and

llI in Fig. 3), the third one {Cathode No. II) having a

diameter of 5 ram. Cathodes No. 1 and III differ by

their tip geometry: No. III has a 60 cone with a

hemispherical tip, while No. I has a tip deepening of

2 mm radius, simulating an eroded calhode stale.

Thrust Balance

Tile ltlPARC thruster ix mounted on a thrust

balance, which is an improved version of the IRS

standard type 3. The movable part of tile bahmcc

carrying the thruster is suspended on three swing

anns. Each swing _mn is supported by two knife ed,,e

bearings. File thrust force is transmitted as a tension

force by a thin wire over a reversing sheave to a

water cooled measuring box containing tim force

transducer. In order to allow tile calibration of the ba-

lance under vacuum conditions, a remotely operated

weight lever has been installed. This lever places a

weighl on a scale which creates a defined force on the

platfoml.

No. I f

Cathode _-. -0 -
No. II f

cot, _No. tli

Fig. 3: Cathode Geometries Tested with ItlPARC.

The electric power is fed to the thruster via two

copper rods submerging into mercury filled tubes. To

aw_id evaporation of the mercury, its surface ix sealed

by silicon oil.

The cooling water for the thruster will be fed to

the platform by semicircular tubes allowing minimum

stiffness. FAlects of stiflness and friction are

calibraled for each measuring sequence before

ignition and checked after engine shut down under

vacuurn conditions.

Test Facilities

The tlIPARC thruster and the thrust balance are

integrated in a stainless steel tank of 4.5 m length and

2 m in diameter. This vacuum chamber is double

walled in order In provide water cooling of ttle tank

during thruster operation. The vacuum system, the

high currcm supply, and the data acquisition system

have been described in formerly published reports 3,4.

A mass flow controller calibrated for hydrogen

has been integrated into the IRS gas supply system, so

that three mass flow controllers with full scale ranges

of 30 slpm, 2())slpm, and 400 slpm (eq. 600 mg/s)

had been available for file tests.

Experimental Results

General Remarks

The experiments had started with file baseline

thruster version depicted m Fig. 2. This version has a

6 nun nozzle throat diameter and a cathode diameter

of 14 mm with a conical tip and a tip crater (Fig. 3,

Cathode No. I). At first a cathode gap of 2 mm was

tested with this thruster version, including a

maximum power test, where an input power of



140 kW at 1320 A with a 3(X)mg/s mass flow rate
could be achieved 5.

The current was increased until sparking occurred

or when file plasma plume became unstable. It could

be noticed flint remarkable plume fluctuations

occurred at almost the same specific power level of

about 480 MJ/kg, and that cathode overheating had

occurred at a current level (1320 A) where the plasma

jet began to become unstable. This behaviour

coincided with a voltage drop at highest current, as

can be seen in the current/voltage plots in Figs. 4, 6,

and 7. With the Mod. 3 thruster a maximum specific

input power of about 270 MJ/kg could be achieved.

Apparently the highest specific input power

achievable depends on the thruster configuration, if

not sparking had set the limit.

The maximum current in the following tests was

set to 1000 A, or lower when sparks were observed.

The sparks originated either from the constrictor wall

(copper) or lrom the cathode tip (tungsten).

120 ....
I

110 i _ :

>_ I(X) _. . ia _taa ajtaaa

*.;, .T.-.o'' Ie4_ , OOO,_

i ......... , , t

_f ± * _- r ! 4 I00mg;s

70-_ " ÷ " + :
(I 300 600 900 1200

(Turrcnt IAI

Fig. 4: (?urrent/Volmge (Tharacteristics obtained with

the Baseline Thruster at 2 mm Cathode (lap.

The Mod. 1 dlruster version (Tab, 1) had been
tested next. With this thruster version it was difficult

to obtain stable operation conditions. It is assumed

that at low mass flow rates high arc fluctuations cause

electromagnetic noise with high amplitudes, making
it difficult to measure even the arc current. No

reliable thrust dam could be obtained at these low

Inass |'low rates.

The Mod. 2 and Mod. 3 thruster configuration

were tested subsequently. Both had a 4 mm nozzle
throat; one with the 5 mm cathode diameter, the other

with a 14 mm diameter and a rounded, conical tip

(Fig. 3, Cathode No. liB.

Copper sparks due to arc attachment in the

constricu)r or at the converging part of the nozzle had
limited the current with the small nozzle throat. Alter

the thruster was dismounted arc traces could be

detected there.

With all cathodes used there was tungsten spitting

observed beyond certain critical current levels. Where
this current level was found to be at aboul 1320 A

with cathode No. I, it is at aNmt 500 A lot catluKle

No. II and for the newly machined cathode No. III. It

had been observed that spitting stopped after some

time, so that a further increase in current was possible

up to a new critical value. With cathode type No. II1
this critical level could be increased to about 900 A

after frequent spitting. The difference between
cathode No. I and No. I11 is due to the difference in

tip geometry: while cathode No. I has a tip deepening

simulating an eroded cathode state, cathode No. III

has a hemispherical tip that allows local overheating

and dins sparking earlier because of the smaller tip

cross section. Post test investigations of cathode

No. II show a flat tip instead of the hemisphere after

frequent spitting.

tl- 500 mg/s

1607-- v- .,00m ,
/ 1

300 mg/s ii
140 :- I_m- - .

I O0 mg/s

: y]

•' eo oomo_odeo ooel

i
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F'ig. 5: Current/Voltage Characteristics obtained with
the Baseline Thruster at 3 mm Cathode Gap.
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Fig. 6: Mod. 3 Thruster Version Current/Voltage

Characteristics. Cathode Gap is 3 mm.

Current�Voltage Characteristics

The arc voltage versus current characteristics

show typical arcjet behaviour. An increase in current
results in a decrease in voltage at low specific power

levels. Figs. 4 and 5 show the curves for the baseline

thruster version at 2 mm and at 3 mm cathode gap. At

higher current levels the curve changes to a positive

slope characteristic, which is known from MPD

devices. This change m characteristics occurs at

lower current al lower mass flow rates, indicating a



dependencyonspecificpowerandthusonthedegree
ofplasinaionization.

Thecurrent/voltagecharacteristicsli)r fileMod.2
andtheMod.3 thrusterconfigurationwerealmost
equal(Figs.6,7),exceptthebehaviourat lowmass
flowrates,whichcanbeexplainedbybadcathode
ceutermgthatinfluencesthecharacteristicsmainlyat
lowmassflowrates.

The voltage is significantly higher with smaller
nozzle throat areas, with the 2.5 mm throat diaJneter

the voltage is nearly twice the value with the 6 mm

throat diameter (Figs. 5, 8).
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Current Distribution

-lhe current distribution m tim ailode is determi-

ned by measuring all fi)ur segmen_ currents

independently by means of shunt resistors, lu order to

verify these segment current measurements the sum

of all segment currents is compared with the total cur-
rent. In most cases the deviation is less Ihari 1 "a of
the total current.

It wits found that the current distribution depends
on the mass flow rate, the nozzle throat dian_cter, the

cathode size, and 0m total current and dlus on the

(specific) input power. The cathode gap was 3 mm in

all cases presented here. The segment numbering is in

accordance with Fig. 2.

In Figs. 9-12 the current distribution in the
nozzle is shown for a mass flow rate of 100 mg/s with

'2all four thruster ,.,eornetries tested. The distributioris

indicate that the arc attaches mainly at the constrictor

segment (Segment No. 1) and at the next downstream

segment, respectively.
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Fig. 9: Mod. 1 Thruster Version Current Distribution
at I(X)mg/s Mass Flow Rate.

5O ......

4()- . A-_b " -
A a

- 30÷ - ,-i i ...... i- s_g

'.,.a _ 41,- Seg 2

- Seg 3

= 20- - _ - - "
Neg ,.1

=_ 10- -- _7....... .__ _

'0

(} _
0 l(X) 200 3(X) 4(X)

Total Current [AJ

Fig 10: Mod ")Thruster Version Current Distribution
at 100 mo/s Mass Flow Rate.

t:::
O

m

'O

80 " t, s¢_, - - -
4k Seg2

",eg 3 •

_a, • •t

0041 ,

l

2()_ . ....
Ik

I T r lr I'll t #t

()+ .........
0 1O0 200 300 400

Total (_urrent [A]

Fig. 11: Mock 3 Thruster Version Current Distribution
at I(X)nio/s Mass Fhiw Rate.



60_ - - ! : ..... f -

P 40 7- " i- i ..... r_I

20

E

_ 0
0

i J

Fig. 12: Baseline Thruster Version

Distribution at loo mg/s Mass Flow P,ate.

_j ii I
;I !11 ,ill i ill ii_illlllF illll!llfll

i

.......... f.......
200 4OO 600 800

Total Current [A]

Current

50 ......

,.,. _ .xeg .

._, 40" " . s¢g.2 .... _I ... --

_-, -- Seg 4

- 30 ......

t:: •
= 20. - . • •_ ._'

E •
¢.,.) ..

;: 10r-- - •
,..)

0 .........
0 30 60 90 120

Total (Turrel)l IA]

Fig. 13: Mod I Thrusler Version ('urrent l)istribution

at 200 mg/s Mass Flow Rate

lit >eg l

• Neg 2

Seg a,

- >,eg 4

50- - -

i

F
30 _ _ A _ --

= 20 ..... *_- - -
. , " . ,..,t•&•

¢•
_, lO ' ,,4¢i O * lit 7._;a._'_
=

".O

0 2(X) 400 600

Total ('urrenl [A]

Fig. 14: Mod. 2 Thruster Version ('urrent Distribution

at 200 tng/s Mass tVlow Rate.

These two segments together collect about 65 %

of the total current at low curren! levels, increasing to
between 75 '7,. with the baseline thrusler and about

90 _'7,with the Mod. 1 and the Mod. 3 thruster at high

current levels• The current portion of segment No. 3

is decreasing with higher currents, starting lit between
20 and 25 '7,-,of the toud current with the exception of

the Mod. 1 thruster, where this segment current

portion remains lit levels less than 10 %. The nozzle

end segment current is not higher than 10 % with all

thruster configurations tested.
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Fig. 15: Mod. 3 Thruster Version Current Distribution

at 200 mg/s Mass Flow Rate.
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Distribution at 200 mg/s Mass Flow Rate.

The current distributions obtained at a mass flow

rate of 2(X)mg/s are depicted in i:igs. 13 - 16. In a

wide currenl range major arc attachment had occurred

in file lwo nozzle end segments. At very low and at

high current levels the arc attachment is closer to the

constrictor segment. This effect is strongest with the

M{yd. 3 configuration (Fig. 15) and, in terms of high
current behaviour, not notable with the baseline

thruster (Fig. 16).
Fits. 17- 20 show the current distributions at a

mass flow rate of 300 mg/s. They show qualitatively

an at least similar trend of the different segment

portions with growing current. The No. i segment

current i_)rtion develops from a lower starting level at
low current to a local maximum at medium current.

With the M_. 1 (at 120 A) and the Mt_l. 3 thruster

configuration (at 300A) a local current portion
minimum could be observed.



ThesegmentNo.2currentportiondecreases with
increasing current, where a local minimunl could be

observed with the Mod. 3 version only.

The trend of" the segment No. 3 current portion

shows a decreasing behaviour with growing current

with the baseline and the Mod. 2 thruster versions,

and a weak dependency on the current with the two

other thruster configurations.
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t:ig 17: Mud I Thruster Version Current Distribution

at 300 mg/s Mass Flow Rate.
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The current portion of the nozzle end segment

(Segment No. 4) starts at a value of 10 - 15 % at low
current, then it decreases slightly to increase at higher
current levels. With the Mud. 1 and the Mud. 3

thruster a maximum value is reached at submaximal

current values. With the Baseline and the Mud. 2

thruster the trend is still increasing, but with a

decreasing slope, indicating that a local maximum
also could have been observed if the current had been

increased to higher values.

Fig. 2(): Baseline Thruster Version

Distribution at 300 mg/s Mass kqow Rate.
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Fig. 21: Thrust versus Input Power with the Baseline

Thruster Version (A: 3 mm Cathode Gap, B: 2 mm

Cathode Gap).

Performance Characteristics

All thruster versions were tested with a cathode

gap of 3 znn_, varying the current up to max. 1000 A
and the mass flow rate in a range given in Tab. 1,

with an incre,nent of 100 mg/s for tile baseline, the
Mud 2 and the Mud. 3 thruster versions, and 50 mg/s
with the Mud. 1 thruster version.

With the baseline thruster version the highest
specific power values and thus the best specific

impulse values could be realized. Fig. 21 shows the

thrust versus input Ix_wer characteristics for all five

mass l]ow rates tested; specific values are depicted in

Fig. 22. The highest specific power was 500 MJ/kg,

where a specific impulse of 1520 s could be reached



withthe200mg/smassflow rate.ttigherpowerle-
velscouldnotbeachievedat thismassflowratedue
tounstablejetbehaviour.

Fig.23showsa zoomedsectionof Fig.22 Best
specificimpulsesat a givenspecificpowerwere
achievedatamassflowrateof 200 nlg/s.

18iX) 1

Fig. 22: Specific hnpulsc versus Specific Input Power
with the Baseline Thruster Version.
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t:ig. 26: Efficiency versus

2iX) ln_/s Mass Flow Rate.
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Errors m the thrust measurement due to thermal

drifting effects could not be avoided completely, their

magnitude was neglioible fit the 100 mg/s mass flow

rate and could be kept smaller than 0.1 N at the other

mass flow rates, so that the resulting error in specific

impulse did not exceed 50 s at 200 mg/s mass flow

rate. A maximum specific impulse value of 1520 s
+50s was achieved with a mass flow rate of

200 mg/s fit the i(X)kW power level, which was the

upper power limit for this mass flow rate because of

cathode spitting. With 100 mg/s mass flow rate the

input power was limited to 50 kW due to cathode

spitting; a specific impulse value of 1400 s could not
be exceeded.

The thrust efficiency is defined as the quotient of

total thrust power divided by the electric input power:

F e
lIT = --

2ill lJl

The thrust efficiency decreases with increasing

specific impulse, which is a consequence of growing

particle excitation energies, which cannot be fully

recovered in the expansion nozzle. The thrust

eMcicncy versus specific impulse characteristic at a

mass flow rate of 2iX)mg/s for all four thruster ver-

sions tested is depicted in Fig. 26. The efficiency at



maximumspecificimpulsewas22%withthe6mm
nozzlethroat.
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Fig. 27: Arc Chmnber Pressure versus Specific Input
Power at 3{)0 mg/s Mass Flow Rate.
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Arc Chamber Pressure Characteristics

The arc ch_unber pressure depends on the nozzle
throat diameter and on the mass flow rate, and it

increases monotonously with increasing input power.

The highest pressure value of 2.9 bar could be
obtained at a maximum power of 30 kW with the

smallest nozzle Lltroat (2.5 him) and die highest mass

llow rate (350 rag/s). Higher mass llow rates could
not be realized will] this thruster version, because the

supply pressure limit was reached.

The arc chmnber pressure is also influenced by the

cathode gap and the cathode size. With the big nozzle

throat three different cath_xle gaps were tested, and
with the Mod. 2 and Mod. 3 thruster versions cathode

dimneters of 5 mm and 14 mm were investigated.

Due to the variation of arc chamber volume by

changing the cathode size, there is an increase in
ch_miber pressure with the bio,_or_,__caLllode. Fig. 27

illustrates the dependency of the arc chamber pressure
on throat diameter and on cathode size at a mass flow

raite of 3011reels

Heat Flux Measurements

The dimensions of a radiation cooled thruster

mainly depend on file mnount of heat that has to be

radiated to the surrounding space. In order to
determine this [m_ount of heat, the heat flux into the

anode segment and cathode cooling water was

calculated by measuring the segment cooling water

mass flow rate and the water temperature before

entering and after leaving the thruster.

The heat flux distribution was found to be in good
correhttion with the current distribution in the anode.

Fig. 28 shows the heat flux distribution in the
baseline thruster version at a mass llow rate of

2(X) nlg/s. (7omparing this figure with die current
distribution obtained at the s_m]e time (Fig. 16), it can

be stated thai the distributions are qualitatively the

s_nnc, but thai there m'-e differences in the quantities.
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Thethermalefficiencyqthyieldstheportionof
the inputpowerwhichremainsin the gasafter
subtractingtheheatflux powertransferredto the
coolingwater.Thedefinitionis

Pel " Qtotal

Flth = Pel '

with Pet being the electric input power, and Qtotal

being the stun of all segment heat fluxes, including

cathode base cooling. The results show a decrease of

thermal efficiency with increasing input power, and

an increase in thermal efficiency with increasing

mass flow rate. The biggest effect could be noticed

between the 100 mg/s and the 200 mg/s mass flow

rate, as it is depicted m Figs. 29 and 30. Although a
further increase in mass flow rate can be noticed m a

further rise of therntal efficiency, this effect is rather

insignificant (Fig. 3 I).
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400 mg/s Mass Flow Rate.
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Version

Influence of the Cathode Gap
With the 6 mm throat diameter cathode gaps of

2 ram, 3 ram, and 6 mm were investigated.

The effect on current/voltage characteristics can

be seen in Fig. 32. It shows a direct dependency of

the arc voltage on the cathode gap up to a certain

critical cathode gap. As a reason it is assumed that the

arc length cannot exceed a certain critical value

burning stable, and that in the unstable mode the arc
attachment is m the converging p_u't of the constrictor

segment or in the constrictor itself.
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Fig. 33: Dependency of the Arc Ch:unber Pressure

from the Cathode Gap with at 6 ,ran Nozzle Throat.

A direct consequence of the higher voltage level is

the increased input power at a given current value at

higher cathode gaps, which increases the maximum

specific power at a given (maximum) current. Or,

front another point of view, the thernml load on the

cathode was decreased with bigger cathode gap at a

given specilic input power. As an example, with the
baseline thruster maximum specific input levels of

470 MJ/kg could be realized with the 2 mm cathode

gap, whereas the maximum specific input power was

500 MJ/kg with a cathode gap of 3 ram: Higher

specific input powers yield higher specific impulses.

Another effect was observed on the arc chamber

pressure, which is the higher the more the cathode is
moved away from the constrictor (Fig. 33). This can

be explained by the longer arc column at bigger

cathode gap, which means more ohmic heating in the

arc chmnber and thus higher arc ch_unber temperature

and pressure.

No effect on specific impulse or efficiency could

be stated; Fig 34 shows the specific impulse versus

specific power characteristics for all three cases.
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Influence of the Nozzle Throat Diameter

As already mentioned above, tile nozzle thrc}at

di_mleter did not directly influence rile perli)ruumce

characteristics of HIt}AR( ". A sin}rig influence was

noticed only on the maximum power levels that could

be reached, which were the highest with the largest
nozzle throat. The heat load to tile constrictor seems

to be the power limiting factor.

As already mentioned above, arc voltage and arc

chamber pressure vary inversely wifll the nozzle
throat diameter, but these par_m_eters did not effect

the performance characteristics.

Conclusions and Discussion

The 11IPARC thruster was tested with a variety {ff
3 nozzle throat di_uneters, several different mass flow

rates, wire three didtrent cathode shapes and :it three

different cathode gaps.

The mass flow rate was found to have a major

influence on thruster performance. There seems 1o be

an optimum mass flow rate at about 200 rag/s, where

more than 1500s of specific impulse could be

obtained and where tile efficiency reaches 22 %.

Alth{}ugh fl_ese thrust efficiencies are only moderate,

they agree very well with the theoretically predicted

values. The maximum total thrust efficiency possible

is given as

Vliotal _ l]lhermal ]]frozen"

where file theruml efficiency is between 60 '/,, and

80 % with the water cooled thruster presented here,

and rile frozen flow efficiency at an arc chamber

pressure of 1 bar and specific impulse values around

150()s is about 30% with hydrogen. Thus a

max]Inure efficiency of 24 % cannot bc exceeded at

these hioh_ specific impulse values.

The fl_ermal efficiency will improve by changing

the cooling concept {}l" tile thruster t{} radiation

cooling, mainly because of tile ;un{}unt of heat

radiated from tile walls back to the propellant gas.

This effect is more pronounced for higher ch;unber

pressures. On the other hand, file frozen flow

efficiency decreases will] increasing chamber pres-
sure.

Specific impulses mainly depend on the specific

input power; higher values than achieved seem to be

possible with file baseline thruster version at higher

current levels with the 3 mm cathode gap, where the

limit was not yet reached. Nevertheless, the ma-

ximum values in specific input power of 5_)MJ/kg

achieved here with the water cooled device yield

specific impulse values beyond the 2000 s limit with

a radiation cooled ttIPARC 6,7.

It is difficult to draw a conclusion for the design

of a radiation cooled arcjet thruster, the result

depending on the design goal. High specific impulses

require high specific input powers and thus large

nozzle throat dimneters yielding low arc chamber

pressures, whereas higher efficiencies require high

arc ch;unber pressures and thus smaller nozzle

thri}ats, which prohibit high specific powers.
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